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1.0 Introduction 
 
 The purpose of coding data is to efficiently transport it through a particular 
medium. The medium may be circuit board traces, ribbon cable, twisted pair copper, 
copper coax, fiber optic or air. Each type of medium suffers from a group of impairments. 
These impairments may include signal reflection, attenuation distortion,  harmonic 
distortion, phase distortion, intermodulation distortion, dropout, echo, crosstalk, delay 
distortion manifesting itself as inter symbol interference (ISI), impulse noise, Gaussian 
noise and frequency shift,   All these impairments in the medium affect the ability to 
transport data. In some cases, these factors can cause an excessive number of bit errors. 
For short transmission line lengths and low signaling rates, the simple linear lines codes 
may be employed. These codes may be unipolar or bipolar and may or may not have 
clocking information contained within the code. When the channel is bandwidth limited, 
more efficient codes are available. Such codes may utilize multi-level symbols and alter 
the message data to allow the receiver to synchronize to it. The most sophisticated codes 
use block coding or convolutional coding to improve the performance of transmission. 
For a bandwidth limited channel, the maximum upper limit for reliable information 
transfer is given by the Hartley-Shannon Law. This law equates the channel bandwidth 
and the signal to noise ratio to the maximum channel capacity and indicates the 
maximum number of symbols that can be transferred per second. This equation is given 
below: 
 
 C = B * log2(1 + SNR) symbols/second 
 
    where: C is the channel capacity 
   B is the channel bandwidth 
   SNR is the signal to noise ratio  
  
 This equation implies that we can trade channel bandwidth for signal to noise 
ratio. When the data is coded, the system can tolerate a lower signal to noise ratio for the 
same bit rate. This difference is called coding gain and is expressed in dB. An example of 
coding gain is shown using the figure below. 
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For the 4-AM constellation, the dot in the curve shows that with the bit error rate of 10-5 
an uncoded system can reliably transfer 2 bits per symbol with a signal to noise ratio of 
19dB. If coding is used with the 8-AM constellation, we can transmit at essentially the 
same data rate with signal to noise ratio of about 13dB. Using coding and the 8-AM 
constellation, the coding gain is 19dB - 13dB = 6dB. Since the data rate is not increased 
over the 4-AM case, we can make use of all 6dB of the coding gain.  When the symbol 
rate is increased, the additional noise will lower the signal to noise ratio causing some of 
the coding gain to be lost. In most cases, the coding gain exceeds the loses due to the 
additional noise. The overall gain (coding gain - noise gain) will allow higher bit rates 
than non-coded systems. The table below shows the coding gains and the noise gains for 
three of the coding techniques discussed in this paper. 
 
 

Type of Code Coding Gain Noise Gain 
Single-Parity Check 3 dB 1.75dB 

Hamming  4.7 dB 2.36 dB 
1/2 Convolutional 7 dB 3 dB 



Accolade Engineering Solutions 4 B. Peterson   

2.0 Linear Line Codes 
 
 Linear line codes are those in which the transmitted data depend linearly on the 
information bits. 
  
2.1 Binary antipodal codes 
 
 The binary antipodal codes require the minimum bandwidth but lack clocking 
information for receiver synchronization. These codes also have a DC content to their 
spectrum. The RZ code uses twice the bandwidth of the NRZ or NRZI codes. These 
codes are used only for the simplest communication systems where the transmitter and 
receiver are relatively close, DC coupled and low speed.  
 
2.1.1 NRZ-L 
   rules: 
 1. 0  =  “+” 
 2. 1 =  “0” 
 

 1 0 0 1 0 1 1 1 0 1 
+v           
           
           
-v           
 
2.1.2 NRZI 
 
   rules: 
 1. 0  =  no transition at beginning of interval 
 2. 1 =  transition at beginning of interval 
 

 1 0 0 1 0 1 1 1 0 1 
+v           
           
           
-v           
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2.1.3 Unipolar RZ 
 
   rules: 
 1. 0  = transition from “0” to “+” at start of interval 
            transition from “+” to “0” at middle of interval 
 2. 1 =  “0” 
 

 1 0 0 1 0 1 1 1 0 1 
+v           
               
           
-v           
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2.2 Binary Bipolar Codes 
 
 Like the binary antipodal codes, the polar NRZ and polar RZ require the 
minimum bandwidth but lack clocking information for receiver synchronization. If the 
number of ones and zeros are equal they have no DC content to their spectrum. These 
codes by themselves do not guarantee an equal number of ones and zeros. In these cases, 
special encoding techniques, such as scrambling, are employed to provide nearly an equal 
number of high and low pulses. The polar NRZ is the type of coding technique used by 
the serial port of a personal computer. The Biphase or Manchester pulses have the 
property of eliminating the DC component but require twice the bandwidth. The Biphase 
and Manchester also have the property that they contain clocking information which may 
be extracted by the receiver. Manchester coding is the coding method used for 802.3 
(Ethernet). 
 
2.2.1 Polar NRZ 
 
   rules: 
 1. 0  =  “+” 
 2. 1 =  “-” 
 

 1 0 0 1 0 1 1 1 0 1 
+v           
           
           
-v           
 
2.2.2 Polar RZ 
 
   rules: 
 1. 0  = transition from “0” to “+” at start of interval 
            transition from “+” to “0” at middle of interval 
 2. 1 = transition from “0” to “-”at start of interval 
           transition from “-” to “0” at middle of interval 
 

 1 0 0 1 0 1 1 1 0 1 
+v           
               
                 
-v           
 



Accolade Engineering Solutions 7 B. Peterson   

2.2.3 Manchester 
 
   rules: 
 1. 0  = transition from “+” to “-” in middle of interval 
 2. 1 = transition from “-” to “+” in middle of interval 
 

 1 0 0 1 0 1 1 1 0 1 
+v           
                     
                     
-v           
 
2.2.4 Biphase-L or Manchester II  
 
   rules: 
 1. 0  = transition from “-” to “+” in middle of interval 
 2. 1 = transition from “+” to “-” in middle of interval 
 

 1 0 0 1 0 1 1 1 0 1 
+v           
                     
                     
-v           
 
2.2.5 Differential Manchester  
 
   rules: 
 1. always transition in middle of interval 
 2. 0  = transition at beginning of interval 
 3. 1 = no transition at beginning of interval 
 

 1 0 0 1 0 1 1 1 0 1 
+v           
                     
                     
-v           
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2.3 Twinned binary codes 
 
 To eliminate the DC component from the spectrum and to keep from increasing 
the symbol rate, the twinned binary codes can be used. A twinned binary code increases 
the number of available symbols by increasing the number of signal levels. The 
pseudoternary, Bipolar-AMI  and the twinned binary codes are examples of codes which 
utilize three signal levels. The main disadvantage of  Twinned binary codes is a slight 
loss in noise immunity. The most widely used of the multilevel binary codes is the 
Bipolar-AMI code. The Bipolar-AMI code was first used in the PCM based T1-carrier 
system by Bell Labs in 1962. The Bipolar-AMI suffers in that the receiver loses clocking 
information when a continuous stream of zeros is transmitted. The next section will 
describe a variation of the Bipolar-AMI code which solves this problem. 
  
2.3.1 Pseudoternary 
 
   rules: 
 1. 0  = alternating “+” and “-” 
 2. 1 = 0 
 

 1 0 0 1 0 1 1 1 0 1 
+v           
           
           
-v           
 
2.3.2 Bipolar-AMI 
 
   rules: 
 1. 0  = 0 
 2. 1 = alternating “+” and “-” 
 
When a “1” is detected which does not have opposite polarity of the last detected “1”, a 
bipolar violation occurs. The Bipolar-AMI, therefore, can be used to detect some errors. 
   

 1 0 0 1 0 1 1 1 0 1 
+v           
           
           
-v           
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2.3.3 Twinned binary code 
 
   rules: 
 1. 0  1 transmits  “+” 
 2. 1  0 transmits “-” 
 3. 0  0 transmits  “0” 
 4. 1  1 transmits “0” 
 

 1 0 0 1 0 1 1 1 0 1 
+v           
           
           
-v           
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3.0 Block Line Codes 
 
 Unlike the linear line codes which operate on a stream of information bits, the 
block line codes operate on a block of information bits. Block line codes are generally 
used to code multiple information bits (k) into fewer symbols (n). The possibilities for k 
and n must satisfy the expression: 2k  Ln, where L is the number of signal levels 
available. When the equality is not met, the redundancy can be used for error tolerance, 
timing information or to minimize the running digital sum (RDS) and its associated 
baseline wander.  The running digital sum is a function which sums the digital levels 
which are transmitted. Each “1” that is transmitted increases the running digital sum by 1 
while each “0” that is transmitted, decreases the running digital sum by 1. The other use 
of block codes is to solve the receiver synchronization problem when the line has no 
transitions for an excessive period of time due to the transmission of too many zero bits 
(or one bits). The B8ZS and HDB3 codes are examples codes which prevent the 
transmission of too many zeros.   Block codes do have the disadvantage of requiring 
framing of the incoming block. Framing will increase the information overhead slightly 
and will increase the complexity of the receiver and transmitter, but are usually justified 
by the performance gains. 
 
3.1 Binary Block Codes 
 
3.1.1 B8ZS 
 
   rules: 
 1. same as bipolar AMI except that any string of eight zeros is replaced 
                by a string with two bipolar code violations   
 
Each “V” below is a bipolar violation. The “B” following  each “V” is to cancel the DC 
component of the bipolar violation  
 

 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 
   0 0 0 V B 0 V B          

+v                    
                    
                    
-v                    
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3.1.2 HDB3 
 
   rules: 
 1. same as bipolar AMI except that any string of four zeros is replaced 
                by a string with one code violation 
 

 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 
   0 0 0 V B 0 0 V   B 0 0 V    

+v                    
                    
                    
-v                    
 
 
3.2 Multilevel Block Codes 
 
 When the medium is bandlimited and higher signaling rates are needed, multi-
level block codes are a common solution. With multi-level block codes, the symbol rate 
is less than the bit rate. Due to the magnitude of the noise in the medium and the signal 
losses over the length of the medium, the number of discrete signals levels is limited. The 
greater the number of signal levels, the greater the chance that one symbol could be 
mistaken for another. For this reason, codes beyond four signal levels are not common 
except in the most complex transmission systems. In this section, the characteristics of 
three level codes will be explored.    
 
3.2.1 kBnT codes 
 
 Unlike the binary block codes which transmit only on bit per symbol, the kBnT 
codes are capable of transmitting an average of 1.58 bits per symbol.  For the kBnT 
codes, k is the number of information bits in the block and n is the number of ternary 
symbols in the code. The notation defines the number of k bits that are encoded into the n 
available symbols. For three level signals, the values for k and n must satisfy the 
expression  2k  3n. The table below lists several possibilities for k and n and their 
efficiencies relative to the rate of 1.58 bits per symbol. Although it would be tempting to 
implement the 3B2T or the 6B4T codes due to their efficiency, they lack the redundancy 
that may be required to control the power spectrum or control the density of ones. The 
4B3T code is a good compromise between efficiency and redundancy and will be 
described in more detail.  
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Efficiencies for k and n values when L (signal levels) = 3 
k n code efficiency 
1 1 1B1T 63% 
3 2 3B2T 95% 
4 3 4B3T 84% 
6 4 6B4T 95% 
7 5 7B5T 89% 

 
 When implementing a kBnT code, the user must choose between coding 
efficiency and redundancy. Efficiency allows more bits to be transmitted for a given 
bandwidth. Redundancy allows for greater coding gain. The 4B3T is most often used 
since it is the best compromise between efficiency and redundancy. 
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3.2.2 Bi-mode 4B3T Coding 
 
 To eliminate a DC component of a bit stream, many methods can be employed. 
Some of these methods may include scrambling, bit stuffing or bi-mode coding. The 
scrambling techniques suffer since they must implement multiple memory stages since 
each output is determined by present and past inputs. Bit stuffing suffers because it 
increases the number of bits transmitted. Bi-mode coding does not require as much 
memory as scrambling and does not increase the number of bits transmitted. The three 
signal levels for the 4B3T will be labeled  +, 0 and -. The redundancy in this code will be 
used to bound the running digital sum between +/- 3. 
  
   rules: 
 1. select symbols from column A if  the RDS is between -3 and -1 
 2. select symbols from column B if  the RDS is between 0 and 3 
 

block value symbol A symbol B RDS 
0000 + 0 - + 0 - 0 
0001 - + 0 - + 0 0 
0010 0 - + 0 - + 0 
0011 + - 0 + - 0 0 
0100 + + 0 - - 0 +/-2 
0101 0 + + 0 - - +/-2 
0110 + 0 + - 0 - +/-2 
0111 + + + - - - +/-3 
1000 + + - - - + +/-1 
1001 - + + + - - +/-1 
1010 + - + - + - +/-1 
1011  + 0 0 - 0 0 +/-1 
1100 0 + 0 0 - 0 +/-1 
1101 0 0 + 0 0 - +/-1 
1110 0 + - 0 + - 0 
1111 - 0 + - 0 + 0 
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For a bit stream of 1010 0101 1100 0011 1001 0110 with an initial RDS of zero, the 
coded symbols will be the following: 
 

 - + - 0 + + 0 - 0 + - 0 + - - + 0 + 
RDS   -1   +1   0   0   -1   0 
+v                   
                   
                   
-v                   
 
 
3.2.3 2B1Q (Two binary, one quaternary) Coding 
 
 Like the kBnT coding, 2B1Q transmits more than one bit per symbol. Each 
symbol in 2B1Q contains 2 bits. 2B1Q effectively halves the required bandwidth for a 
channel. The quaternary symbols are encoded as shown below: 
 

First Bit (sign) Second Bit (sign) Quat 
1 0 +3 (+2.5V) 
1 1 +1 (+5/6V) 
0 1 -1 (-5/6V) 
0 0 -3 (-2.5V) 

 
   The two most common implementations of 2B1Q is the basic rate ISDN-U interface 
and the HDSL interface. The basic rate ISDN-U interface transmits 160Kbits/second. 
Most of the energy of the ISDN-U signal is under 40KHz. The HDSL (high bit rate 
digital subscriber line) transmits 784Kbits/second over twisted pair copper wire. 
768Kbits of the transmitted signal is the payload. The remaining 8Kbits are used for 
overhead and signaling. Most of the energy of the HDSL signal is under 196KHz.   
 
For a scrambled bit stream of 1010 0101 1100 0011 1001 0110, the coded symbols will 
be the following: 
 

 10 10 01 01 11 00 00 11 10 01 01 10 
             

+3             
+1             
-1             
-3             
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4.0 Error Checking Codes 
 
4.1 Single-Parity Check Code 
 
 The parity check coder uses the least number of “check” bits, but is only able to 
detect bits errors which involve an odd number of bits. Any block with an even number 
of bits in error will not be detected by this method. The input to the Single-Parity Check 
coder is the m message bits and the output of the Single-Parity Check coder is an m+p 
codeword. The extra bit is appended to the original data by a device which implements 
the  generator matrix. The codeword is transmitted to the receiver where it is checked 
with another device which implements a parity check matrix. The output of the parity 
check device is a single data bit. This output is called the Single-Parity Check syndrome. 
A bit value of zero indicates that no errors were detected and a bit value of one indicates 
that an error has been detected. All the matrix multiplication is performed modulo-two.  
 
The generator matrix for the Single-Parity Check Code  
for a 4 bit message block is: 
 

G =

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1  

 
The parity-check matrix for the Single-Parity Check Code  
for a 4 bit message block is: 
 

H = 1 1 1 1 1  
 
 
Example for odd value message block: 
 
let the message block, b = 1 0 0 0 
 
b * G = c 
 
   where: 
 G is the Single-Parity Check generator matrix 
 c is the resulting Single-Parity Check codeword  
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The format of the codeword is: 
 

m1  m2  m3  m4  p  
 
   where: 
 m1, m2, m3, m4 are the message bits 
 p is the parity check bit 
 

1 0 0 0

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

= 1 0 0 0 1*

 
 
To check the Single-Parity Check codeword, we multiply the codeword by the transpose 
of the parity check matrix to get the syndrome bit S. A syndrome bit value of zero 
indicates that no parity errors were detected. We must remember, however, that the data 
may still be in error but undetectable using this method (an even number of bit errors are 
not detectable with parity checking). A syndrome bit value of one indicates that a parity 
error has been detected. 
 
c * HT = S  
 
   where: 
 c is the Single-Parity Check codeword 
 HT is the transpose of the parity check matrix 
 S is the syndrome bit 
 

1 0 0 0 1 *

1
1
1
1
1

= 0

 
 
The resulting zero indicates that no errors were detected. The parity check bit will be  
removed from the codeword to get the original message block. Now the same message 
block will be used but the codeword will have bit two inverted. 
 

1 1 0 0 1 *

1
1
1
1
1

= 1

bit in error
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The resulting value of one for the syndrome indicates that an error has been detected. 
 
Example for even value message word: 
 
let the message block, b = 1 0 1 0 
 

1 0 1 0

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

= 1 0 1 0 0*

 
 
 
Generating the syndrome bit as before: 
 

1 0 1 0 0 *

1
1
1
1
1

= 0

 
 
The resulting zero indicates that no errors were detected. The parity check bit will be 
removed from the codeword to get the original message block. Now the same message 
block will be used but the codeword will have bit three inverted. 
 

1 0 0 0 0 *

1
1
1
1
1

= 1

bit in error

 
 
The resulting value of one for the syndrome indicates that an error has been detected. 
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4.2 Checksum Codes 
 
 One popular method for error detection is the use of checksums. Checksums have 
the advantage of operating on a long sequence of data. Typically the data is 8 bit 
character data (or ASCII data) in a file or character frame. Each character byte is summed 
into a checksum variable. As the data is summed into the checksum variable, the carry’s 
are ignored. The checksum variable is usually appended to the end of the data field and is 
called the checksum field.  The checksum field can be one or more bytes. The ability to 
detect errors in a multibyte sequence is affected by the number of bytes in the sequence 
and the size of the checksum field. Four different types of checksums will be described: 
the single precision checksum, the double precision checksum, the Honeywell checksum 
and the residue checksum.   
 
4.2.1 Single-Precision Checksum 
 
 For a single-precision checksum, each byte of the data is summed into a single 
byte. The example below shows how a single precision checksum is calculated. The 
limitation of the single precision checksum is its ability to detect stuck at one (SA1) 
failures in the most significant bit of the input data. Since the SA1 in the MSB of the 
checksum will be discarded often in the carry operation, our ability to detect SA1 is poor.  
 
Transmitted Data: 
 
Byte 1 0 0 1 0 1 1 0 0 2CH
Byte 2 0 1 0 1 0 0 1 1 53H
Byte 3 1 0 0 1 0 1 1 1 97H
Byte 4 1 1 0 1 0 1 0 0 D4H

Carry Ignored  
 Computed Checksum 

 1 1 1 0 1 0 1 0 EAh
 
Transmitted Block: 
 

  Data   Checksum
2C 53 97 D4 EA 
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4.2.2 Double-Precision Checksum 
 
 For a double-precision checksum, each location of the data of n-bits is summed 
into a location of 2n-bits. For the single precision example, a double precision checksum 
would be 16 bits (2 bytes). The example below shows how a double precision checksum 
is calculated for 8 bit data. If the data was 16 bit data, the double precision checksum 
would be 32 bits (4 bytes). The problem with the detection of SA1 faults can be detected 
using the double precision checksum. Carry’s from the low order byte of the checksum is 
summed into the high order byte of the checksum. Carry’s from the high order byte of the 
checksum are ignored. 
 
Transmitted Data: 
 
Byte 1 5A 
Byte 2  EF 
Byte 3 24 
Byte 4 C5 

  
  

Computed Checksum 
02 32 

 
 
Transmitted Block: 
 

  Data    Checksum  
5A EF 24 C5 02 32 
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4.2.3 Honeywell Checksum 
 
 The Honeywell Checksum is an alternative to the double precision checksum. The 
data is still summed into a location which is 2n bits in length where n is the size of the 
data word. Unlike the double precision checksum, the Honeywell checksum interleaves 
the data bytes into double length words before the addition to the checksum location. 
Carry’s from the high order byte of the checksum are ignored. The Honeywell checksum 
can find SA1 and SA0 errors which occur in the same bit positions of all the data words. 
The example below shows how the Honeywell checksum is calculated for 8 bit data. 
 
Transmitted Data: 
  
Byte 1 C3 
Byte 2  FE 
Byte 3 DB 
Byte 4 B4 

  
  

Interleaved Data 
FE C3 
B4 DB 

  
  

Computed Checksum 
B3 9E 

 
 
Transmitted Block: 
 

  Data     Checksum   
C3 FE DB B4 B3 9E 
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4.2.4 Residue Checksum 
 
 The residue checksum is a variation of the single precision checksum which 
solves the problem of the undetectable SA1 errors in the MSB of the data word. The 
residue checksum takes the carry out from the MSB of the checksum and adds it to the 
LSB of the checksum. The example below shows how a residue checksum is calculated 
for 8 bit data. 
 
Transmitted Data: 
 
 Byte 1 13  
 Byte 2 A4  
 Byte 3 6C  
 Byte 4 41  
    

1  Carry 64  
    

Wraparound Carry 
 

+  

  
 Computed Checksum 
  65  
 
Transmitted Block: 
 

  Data   Checksum
13 A4 6C 41 65 
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4.3 CRC Codes 
 
 A better method to detect errors in a large block of data involves the use of CRC 
codes. The hardware required to implement a CRC code is slightly more complicated 
than other error detection codes but it has an error detection effectiveness greater than 
99.9%.  The CRC is calculated by dividing the message block by a generator polynomial. 
The quotient is discarded and the remainder is appended to the end of the message block 
for transmission. CRC hardware is implemented using multi-stage shift registers so the 
length of the message block does not affect the operation of  the CRC generation 
hardware. At the receiving end, the transmitted block with the CRC is divided by the 
same generator polynomial. Once again the quotient is discarded and the remainder is 
checked to determine if any errors occurred. A remainder of zero indicates that no errors 
were detected. Since the CRC is only an error detecting code, the position of  an error in 
the received message can not be determined. CRC codes would be used in 
communication protocols that use automatic repeat request (ARQ). The four CRC codes 
described in this paper include the CRC-12, the CRC-16, the CRC-CCITT and the CRC-
32. 
 
 The operation of all the CRC codes is identical. To explain the CRC generation 
process, a short simple message block and a small CRC generator polynomial will be 
used. The CRC performs its arithmetic on binary data which has been represented as a 
polynomial. Each bit position of the message block is represented as a coefficient of a 
polynomial. The general form of the polynomial is: 
 
 M(x) = bnXn + bn-1Xn-1 + bn-2Xn-2 + . . . + b2X2 + b1X + b01 
 
 where: 
  bn = the value of the message block at bit position n (0 or 1) 
  
The degree of the polynomial will be one less than the total number of bits in the message 
block.  
 
 The message block  “101001101” has 9 bits (k = 9). The polynomial 
representation for this message block will have a degree of 8.  With the LSB to the right, 
the polynomial representation for the message block is: 
 
 M(x) = 1•X8 + 0•X7 + 1•X6 + 0•X5 + 0•X4 + 1•X3 + 1•X2 + 0•X + 1•1 
 
After simplification, the polynomial for the message block is: 
 
M(x) = X8 + X6 + X3 + X2 + 1 
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For the generator polynomial we will use: 
 
G(x) = X5 + X2 + X + 1 
 
        = 1 0 0 1 1 1 
 
Since  the degree of the generator polynomial is 5, the number of bits in the generated 
CRC will be 5. The total number of bits transmitted, therefore, will be 14 (n = 14). 
 
The calculation of the CRC for transmission proceeds as follows: 
 
1. Multiply the message polynomial by Xn-k. In this example the value will be X14-9 = X5. 
 
 Xn-k• [M(x)] = X5• [X8 + X6 + X3 + X2 + 1] 
 
          =  X13 + X11 + X8 + X7 + X5 
 
          = 1 0 1 0 0 1 1 0 1 0 0 0 0 0  
 
2. Divide Xn-k• [M(x)] by the generator polynomial G(x) and discard the quotient. The 
remainder is the CRC or the Block Check Character (BCC) which will be called B(x). 
 
 

1  0  0  1  1  1 1  0  1  0  0  1  1  0  1  0  0  0  0  0
1  0  1  1  1  1  1  1  0

 1  0  0  1  1  1
 1  1  1  0  1  0
 1  0  0  1  1  1

 1  1  1  0  1  1
 1  0  0  1  1  1

 1  1  1  0  0  0
 1  0  0  1  1  1

 1  1  1  1  1  0
 1  0  0  1  1  1

 1  1  0  0  1  0
 1  0  0  1  1  1

 1  0  1  0  1  0
 1  0  0  1  1  1

 1  1  0  1  0

discard quotient

remainder (BBC), B(x)  
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3. Append the CRC, B(x), to the message block, M(x), to create the transmitted message 
block,  T(x). 
 
 T(x) = Xn-k• [M(x)] + B(x) 
 

   1  0  1  0  0  1  1  0  1  0  0  0  0  0 Xn-k[M(x)]
+                                  1  1  0  1  0 B(x)

   1  0  1  0  0  1  1  0  1  1  1  0  1  0 T(x)  
 
 
Checking the transmitted block at the receiving end proceeds as follows: 
 
1. Divide T(x) by the generator polynomial G(x) and discard the quotient. A remainder of 
zero indicates that the block was received without error. 
 
 

1  0  0  1  1  1 1  0  1  0  0  1  1  0  1  1  1  0  1  0
                        1  0  1  1  1  1  1  1  0

 1  0  0  1  1  1
 1  1  1  0  1  0
 1  0  0  1  1  1

 1  1  1  0  1  1
 1  0  0  1  1  1

 1  1  1  0  0  1
 1  0  0  1  1  1

 1  1  1  1  0  1
 1  0  0  1  1  1

 1  1  0  1  0  0
 1  0  0  1  1  1

 1  0  0  1  1  1
 1  0  0  1  1  1

 0

discard quotient

remainder equals zero (no errors)  
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4.3.1 CRC-12 
 
 The CRC-12 polynomial is used for block containing characters that are six bits 
in length. The generator polynomial for the CRC-12 is: 
 
 G(x) = X12 + X11 + X3 + X2 + X + 1 
 
The circuit which implements this polynomial is shown below. The block of data is 
shifted into the data input line. After all the data has been shifted in, the remainder will 
be stored in the registers 0 through 11. 
 

11 10+ + 9 + 12345678 ++ 0

X X2 X3 X11 X12

LSBMSB

Data Input
CRC-12 Polynomial

 
 
 
4.3.2 CRC-16 
 
 The CRC-16 polynomial is used for block containing characters that are eight bits 
in length. The generator polynomial for the CRC-16 is: 
 
G(x) = X16 + X15 + X2 + 1 
 
The circuit which implements this polynomial is shown below. The block of data is 
shifted into the data input line. After all the data has been shifted in, the remainder will 
be stored in the registers 0 through 15. 
 

15 14 + 12 12345678 ++ 0

X2 X15 X16

LSBMSB

Data Input
CRC-16 Polynomial

9101113
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4.3.3 CRC-CCITT 
 
 The CRC-CCITT polynomial is used for block containing characters that are eight 
bits in length. The generator polynomial for the CRC-CCITT is: 
 
G(x) = X16 + X12 + X5 + 1 
 
The circuit which implements this polynomial is shown below. The block of data is 
shifted into the data input line. After all the data has been shifted in, the remainder will 
be stored in the registers 0 through 15. 
 

15 14 +12 12345678 ++ 0

X5 X12 X16

LSBMSB

Data Input
CRC-CCITT Polynomial

9101113

 
 
 
4.3.4 CRC-32 
 
 The CRC-32 polynomial is used for block containing characters that are sixteen 
bits in length. The generator polynomial for the CRC-32 is: 
 
G(x) = X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 +  X + 1 
 
The circuit which implements this polynomial is shown below. The block of data is 
shifted into the data input line. After all the data has been shifted in, the remainder will 
be stored in the registers 0 through 31. 
 

2829 +27 212223 B+

X8 X10

MSB

242526 +

X7

+

X2

30+

X

31

15 14 +12 12345678 ++ 0

X23 X26 X32

LSB

Data Input
CRC-32 Polynomial

9101113 +

X22

+

X16

16171819+

X12

20

A

B

A

+

X11

+

X5

+

X4
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5.0 Memoryless Error Checking and Correcting Block Codes 
 
 One of the best uses for the redundancy in a multi-level code is to implement 
error checking and correcting. Like other error checking methods, the check bits are 
transmitted along with the message bits. The ability to perform error correction at the 
receiving end without retransmission is called forward error correction (FEC). FEC is 
one of the best methods when the communication is simplex or broadcasted to many 
users. Two popular methods to check and correct errors using block codes are Parity 
Check coding and Hamming coding. These techniques are called “memoryless” since the 
output of the block coder is only dependent on the present state of its inputs. With each 
error checking and correcting code we have a specification called the Hamming distance. 
The Hamming distance determines the maximum number of bits in error that can be 
detected in a block and the maximum number of bits that can be corrected in a block. The 
formulas below show the relationship between the Hamming distance and the number of 
errored bits that can be detected and corrected. 
 
 maximum number of detectable bits in error is  H - 1 
 
 maximum number of correctable bits in error is  (H - 1)/2 
   
The block coder block diagram for (7,4) coding is shown below: 
 

BLOCK
CODER

C(1)

C(7)

B(1)

B(4)

CkBk

Source
Bits

Coded
Bits

Parallel-to-Serial ConverterSerial-to-Parallel Converter

Shift Register Shift Register
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5.1 Parity Check Code 
 
 The single parity check coding method can be extended in a manner which allows 
for errors to be detected and corrected. The number of parity (check) bits increases but 
the ability to detected up to two bits in error and correct one bit is achieved. The figure 
below illustrates the method employed to implement multiple parity check bits. 
 
 
    m1 
 

 
    m2 

 
   m3 

 
    c1 

 
    m4 
 

 
    m5 

 
   m6 

 
    c2 

 
   m7 
 

 
    m8 

 
   m9 

 
    c3 

 
   c4 
 

 
    c5 

 
   c6 

 
     

 
 
 In this example, the bits m1 - m9 are the 9 original message bits and bits c1 - c6 are 
the 6 check bits. The even parity, the check bits c1 - c6 are encoded as follows: 
 
c1 = m1     m2     m3  
c2 = m4     m5     m6  
c3 = m7     m8     m9  
c4 = m1     m4     m7 
c5 = m2     m5     m8 
c6 = m3     m6     m9 
 
where     is the modulo 2 addition operator (exclusive OR) 
 
The codeword transmitted could have the form: 
 
m1  m2  m3  m4  m5  m6  m7  m8  m9  c1  c2  c3 c4  c5  c6 
 
 The position of the check bits can be placed anywhere in the codeword. For 
simplicity, they are shown here clustered together at the end of the codeword. In practice, 
the check bits would be separated in the codeword to ensure that a noise burst would not 
destroy more than one of the check bits.  
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5.2 Hamming Codes 
 
 Hamming coders are preferred over the Single-Parity Check coders when 
detection as well as correction is desired. Hamming codes are capable of detecting up to 
two bits in error and have the ability to correct single bit errors. Hamming codes come in 
several varieties based on the number of message bits (m) and check bits (c) in its output. 
All Hamming codes are classified as linear block codes. The input to the Hamming coder 
is the m message bits and the output of the Hamming coder is an m+c codeword. The 
extra bits are appended to the original data by a device which implements the generator 
matrix. The codeword is transmitted to the receiver where it is checked with another 
device which implements a parity check matrix. The output of the parity check device is 
a string of data bits with the same number of bits as the check bits. This output is called 
the Hamming syndrome and, through a look-up table, a single bit fault (if it exists) can be 
identified and corrected. All the matrix multiplication is performed modulo-two. 
Hamming codes are identified by a set of ordered pairs which indicate their number of 
message bits and the number of bits in the codeword. For an (n,k) Hamming coder, k is 
the number of input bits and n is the number of output bits. The number of Hamming bits 
is determined by the number of data bits. The equation which determines the number of 
Hamming bits is shown below. 
 

 2n-k n +1   
 
 where: 
  k = number of data bits 
  n = total number of bits transmitted in a message stream 
   
All Hamming codes have a minimum Hamming distance of 3 regardless of the number of 
check bits. A Hamming code, therefore, can be used for single error correction or double 
error detection. The table below shows the relative efficiency of three sizes of Hamming 
codes along with the polynomial coefficients. The greater the Rc value (the code rate), the 
greater the efficiency. 
 

n  
(codeword size) 

k 
(block size)  

R c 
 (code rate) 

G(p) 
(polynomial) 

7 4 0.57 1  011 
15 11 0.73 10  011 
31 26 0.84 100  101 
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The generator matrix for encoding the (7,4) Hamming codeword is: 
 
G = [ I | P ] 
 
where:  
 I = Identity Matrix 
 P = Submatrix  
 

G =

1 0 0 0   1 0 1
0 1 0 0   1 1 1
0 0 1 0   1 1 0
0 0 0 1   0 1 1  

 
The parity-check matrix for determining the syndrome value for  
the (7,4) Hamming codeword is: 
 

H = PT I  
 
where: 
 PT = The transpose of the Submatrix of the generator matrix 
 I = Identity Matrix 
 

1 1 1 0   1 0 0
0 1 1 1   0 1 0
1 1 0 1   0 0 1

H =

 
 
The syndrome translation table for the (7,4) Hamming code is: 
 

Syndrome Bits (S) Bit in error (E) 
0 1 2 0 1 2 3 4 5 6 
0 0 0 0 0 0 0 0 0 0 
1 0 1 1 0 0 0 0 0 0 
1 1 1 0 1 0 0 0 0 0 
1 1 0 0 0 1 0 0 0 0 
0 1 1 0 0 0 1 0 0 0 
1 0 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 1 
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Example of Hamming Code: 
 
let the message block,  m = 1 0 1 0 
 
m * G = c 
 
   where: 
  G is the Hamming generator matrix 
 c is the resulting Hamming codeword  
 
The format of the codeword is: 
 

m1  m2  m3  m4  c1  c2  c3  
 
   where: 
 m1, m2, m3, m4 are the message bits 
 c1, c2, c3 are the check bits 
 

1 0 1 0

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

= 1 0 1 0 0 1 1*

 
 
To check Hamming codeword we multiply the codeword by the transpose of the 
Hamming parity check matrix to get the syndrome matrix S. 
 
c * HT = S  
 
   where: 
 c is the Hamming codeword 
 HT is the transpose of the Hamming parity check matrix 
 S is the syndrome matrix 
 

1 0 1 0 0 1 1

1 0 1
1 1 1
1 1 0
0 1 1
1 0 0
0 1 0
0 0 1

= 0 0 0*

 
 
 
Since the syndrome bits = 0, no errors have been detected. The check bits will be 
removed from the codeword to get the original message block. Now the same message 
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(1010) will be used but the Hamming codeword will have the second bit from the left 
inverted.  
 

1 1 1 0 0 1 1

1 0 1
1 1 1
1 1 0
0 1 1
1 0 0
0 1 0
0 0 1

= 1 1 1*

bit in error

 
 
 
Checking the syndrome bits against the syndrome translation table confirms the reversal 
of the second bit. 
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6.0 Error Checking and Correcting Block Codes with Memory 
 
 One of the main disadvantages of Hamming codes is the fixed Hamming distance 
and the difficulty of implementing coders for large blocks. The fixed Hamming distance 
of Hamming codes allows for detection of two errored bits and the ability to correct only 
a single errored bit. A code which allows the implementor to choose the desired 
Hamming distance would be beneficial. The largest practical Hamming coder allows for 
codewords of only 31 bits. Because of these limitations, cyclic block coders are preferred 
when selected Hamming distances (redundancy) are or long block lengths are needed. 
The type of cyclic block coder that will be described are BCH coders. BCH codes were 
developed by R.C. Bose, D.K. Ray-Chaudhuri and A. Hocquenghem.   
 
6.1 The general form for the polynomial for implementing the BCH codes is shown 
below. 
 
G(x) = (x + Db+1) (x + Db+2) (x + Db+3)... (x + Db+2t), P(x) 
 
where: 
 t = number of errors to correct per block 
 b = 0 for narrow-sense BCH codes  0 for wide-sense BCH codes 
 D( ) = roots of the polynomial 
 P(x) = additional polynomial that ensures that all coefficients in G(x) are 1 or 0 
 
 The methods to determine b, D( ) and P(x) are beyond the scope of this paper. A 
simple procedure using a table driven approach can be used for a small codeword size. 
The procedure to generate the BCH polynomial G(x) is given below. 
 
1. Select values for n (codeword length) and m where the following equality is satisfied: 
 
 n = 2m - 1 
 
2. Select the desired number of errored bits to correct in each block of n bits. The 
distance of the code is: 
  d = 2t + 1 
 
  where: 
   t = number of errored bits to correct 
   d = code distance 
 
3. Select an integer j between 1 and 2m - 2 where j and 2m - 1 have no factors in common. 
A reasonable default value for j is 1. 
 
4. For the values of t and j selected earlier, find the first t odd multiples of  j.  When one 
of the odd multiples exceeds 2m - 2, reduce the value modulo 2m - 1. The resulting 
generator polynomial will have a root Di for each value of i = j, 3j, 5j...(2t-1)j. 
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5. Use the table to find the minimal polynomial for each root of Dy. 
 
6. Multiply all the unique minimal polynomials. (a minimal polynomial may have more 
than one Dy root. 
 
6.2 Example of a generator polynomial for a BCH code 
 
Design Requirements: 
 
 codeword length = 15 
 number of errors to correct = 3 
 
Solution: 
 
1. Using the equation:   n = 2m – 1, set n = 15 and solve for m 
  
 15 = 2m – 1 
 

m = 4 
 
2. The valid values for j  that lie between 1 and 2m - 2 = 14 that are not factors of 2m - 1 
are (1, 2, 4, 7, 8, 11, 13, 14) . The factors of 2m - 1 = 15 are 3 and 5 and are therefore 
excluded from the list of possible j values. For this example let  j = 1.   
 
3. Since t = 3, the first 3 odd multiples of  j are 1*j = 1, 3*j = 3 and 5*j = 5. 
 
4. Using Table 1, the minimal polynomials are: 
 
 M(1)(x) = x4 + x + 1 
 
 M(3)(x) = x4 + x3 + x2 + x + 1 
 
 M(5)(x) = x2 + x + 1 
 
5. Now multiply M(1)(x), M(2)(x) and M(3)(x) together to get: 
 
  G(x) = x10 + x8 + x5  + x4 + x2 + x + 1 
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6. The total number of bits in the codeword is given by the following equation: 
 
 n = k + c 
 
 where: 
  n = number of bits in codeword 
  k = number of information bits 
  c = number of check bits 
 
Since G(x) has a degree of 10, the number of information bits is  15 = k + 10   k = 5. 
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Table 1 - 4th order Minimal Polynomials 
i minimal polynomial M(i)(x) 
1 x4 + x + 1 
3 x4 + x3 + x2 + x + 1 
5 x2 + x + 1 
7 x4 + x3 + 1 

  
The Generator Polynomial is used to generate the check bits in the same manner as was 
done for the CRC codes. On the receive side, the received codeword will have the form: 
 
 R(x) = C(x) + E(x) 
 
 where: 
  R(x) = the received codeword 
  C(x) = the transmitted codeword 
  E(x) = the error polynomial 
 
When E(x) = 0, no errors are present. When errors are present, the bits in error can be 
determined by solving a system of polynomials which correspond to the number of 
possible error syndromes.   
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7.0 Convolutional Coding 
 
 Convolutional coding, unlike the block coding, uses a finite memory system to 
generate the redundant codes. Convolutional coding is more popular than block coding 
because it is simple to implement and their performance matches or exceeds that of block 
codes. The input to the Convolutional coder is the m message bits and the output of the 
Convolutional coder is the n data bits. The convolutional coder is called an m/n coder. 
The new bits are created by a device which implements the generator matrix. The 
encoded data is transmitted to the receiver where it is checked with another device which 
implements a parity check matrix. The output of the parity check device is a single data 
bit. This output is called the syndrome. A bit value of zero indicates that no errors were 
detected and a bit value of one indicates that an error has been detected. All the matrix 
multiplication is performed modulo-two. Using more complicated checkers and decoders 
will allow the detection and correction of faulty data bits. 
 
 
7.1 The 1/2 Convolutional Coder 
 
 The 1/2 convolutional coder is the simplest convolutional coder to implement. 
This coder inputs a single bit (Bk) and outputs two bits (Ck

(1) and Ck
(2)). 

 
7.1.1 Coder for the 1/2 convolutional code 
 
Generator Matrix is G(D) =  [ (1+D2)  (1+D+ D2) ] 
 
The circuit which implements this coder polynomial is shown below: 
 

+

D

+

D

Ck
(2)

Ck
(1)

Bk-1 Bk-2Bk

 
 
Example for 1/2 convolutional coder/decoder: 
  
Bit sequence for Bk is 11011010 
 
With initial conditions of  Bk-1 = 0, the state table which shows the movement of data 
through the coder is shown on the next page. The two bits (Ck

(1) and Ck
(2)) are the outputs 

of the coder. 
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State Table for the 1/2 convolutional coder 

Bk Bk-1 Bk-2 Ck
(1) Ck

(2) 
0 0 0 0 0 
1 0 0 1 1 
0 1 0 0 1 
1 0 1 0 0 
1 1 0 1 0 
0 1 1 1 0 
1 0 1 0 0 
1 1 0 1 0 

 
 
7.1.2 Checker for the 1/2 convolutional code 
 
Parity Check Matrix is H(D) = [  (1+D+D2)  (1+D2)  ] 
 
The circuit which implements this parity checker polynomial is shown below: 
 

D

+

D
Ck-1

(1) Ck-2
(1)Ck

(1)

+

+
DD

+

Ck
(2) Ck-1

(2) Ck-2
(2) S

node 2node 1

node 3
 

 
 
For the generated Ck

(1) and Ck
(2) bits above and with initial conditions of  Ck-2 = Ck-1 =  Ck 

= 0, the state table which shows the movement of data through the decoder is shown 
below. The S (syndrome) bit is the output of the decoder. 
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Parity Checker State Table (no data errors) 
Ck

(1) Ck-1
(1) Ck-2

(1) Ck
(2) Ck-1

(2)  Ck-2
(2) S node 1 node 2 node 3 

0 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 1 1 1 
0 1 0 1 1 0 0 1 1 1 
0 0 1 0 1 1 0 0 1 1 
1 0 0 0 0 1 0 1 1 1 
1 1 0 0 0 0 0 0 0 0 
0 1 1 0 0 0 0 1 0 0 
1 0 1 0 0 0 0 1 0 0 

All zeros in the syndrome bit column of the state table indicates that no errors were 
detected.  
 
 
Now the same data will be used but the second bit of Ck

(1) will be inverted. 
 
Parity Checker State Table (with data error)  
Ck

(1) Ck-1
(1) Ck-2

(1) Ck
(2) Ck-1

(2)  Ck-2
(2) S node 1 node 2 node 3 

0 0 0 0 0 0 0 0 0 0 
0  0 0 1 0 0 1 0 0 1 

0 0  0 1 1 0 1 0 0 1 
0 0 0  0 1 1 1 0 0 1 
1 0 0 0 0 1 0 1 1 1 
1 1 0 0 0 0 0 0 0 0 
0 1 1 0 0 0 0 1 0 0 
1 0 1 0 0 0 0 1 0 0 

  
The one values for the syndrome bit indicate that an error was detected starting at the 
second set of bits in the bit stream. Since the output of the decoder would be a single bit, 
the second bit in the bit stream could be reversed to correct the error 
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7.2 The 2/3 convolutional code 
 
 The 2/3 convolutional coder is also easy to implement and provides three output 
bits (Ck

(1), Ck
(2)and Ck

(3)) for two input bits (Bk
(1)  and Bk

(2)). 
 
 
7.2.1 Coder for the 2/3 convolutional code: 
 
Generator Matrix is G(D) =  1  0  (1+D) 
                                             0  1  D 
 
The circuit which implements this coder polynomial is shown below: 
 

D

+

D

Ck
(1)Bk

(1)

+

Bk
(2) Ck

(2)

Ck
(3)

 
 
 
Example for the 2/3 convolutional coder/decoder: 
 
Bit sequence for Bk

(1) is 11011010 
Bit sequence for Bk

(2) is 10100101 
 
With initial conditions of  Bk-1

(1) = Bk-1
(2) = 0 

  
State Table for the 1/2 convolutional coder 
Bk

(1) Bk-1
(1) Bk

(2) Bk-1
(2) Ck

(1) Ck
(2) Ck

(3) node 1 
0 0 1 0 0 1 0 0 
1 0 0 1 1 0 0 1 
0 1 1 0 0 1 1 1 
1 0 0 1 1 0 0 1 
1 1 0 0 1 0 0 0 
0 1 1 0 0 1 1 1 
1 0 0 1 1 0 0 1 
1 1 1 0 1 1 0 0 

 



Accolade Engineering Solutions 41 B. Peterson   

7.2.2 Checker for the 2/3 convolutional code 
 
Parity Check Matrix is H(D) = [ (1+ D)  D  1 ] 
 
The circuit which implements this parity checker polynomial is shown below: 
 

D

+

D
Ck

(1)

+
Ck

(2)

Ck
(3)

Ck-1
(1)

Ck-1
(2)

S

 
 
 
Parity Checker State Table (no data errors) 

Ck
(1) Ck-1

(1) Ck
(2) Ck-1

(2) Ck
 (3) S node 1 

0 0 1 0 0 0 0 
1 0 0 1 0 0 1 
0 1 1 0 1 0 1 
1 0 0 1 0 0 1 
1 1 0 0 0 0 0 
0 1 1 0 1 0 1 
1 0 0 1 0 0 1 
1 1 1 0 0 0 0 

 
The zeros for all values of the syndrome bit S indicates that no errors were detected.  
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Now the same data will be used but the second bit of Ck
(1) will be inverted. 

 
Parity Checker State Table (with data error) 

Ck
(1) Ck-1

(1) Ck
(2) Ck-1

(2) Ck
 (3) S node 1 

0 0 1 0 0 0 0 
0  0 0 1 0 1 0 

0 0  1 0 1 1 0 
1 0 0 1 0 0 1 
1 1 0 0 0 0 0 
0 1 1 0 1 0 1 
1 0 0 1 0 0 1 
1 1 1 0 0 0 0 

 
The one values for the syndrome bit indicate that an error was detected starting at the 
second set of bits in the bit stream.  
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8.0 Summary 
 
 This paper has demonstrated many data coding techniques. The coding technique 
chosen for a particular application is determined by the performance requirements of the 
system. Short links with high signal to noise ratio can use simple linear line codes such as 
RZ, NRZ, AMI or Manchester. When the link is longer and affected by noise, more 
advanced coding techniques are employed. Redundancy can be added to the line code to 
provide coding gain. The coding gain improves system performance. Line codes which 
add redundancy include multilevel line codes, bipolar violation insertion codes and codes 
which maintain a bounded RDS. For more advanced systems, error checking codes may 
be used when the system also uses one of the ARQ protocols. Error checking codes 
include parity checking, checksums and CRCs. When an ARQ protocol is not appropriate 
due to the nature of the system, FEC techniques are used. FEC techniques include 
Hamming coders, BCH coders and convolutional coders. In all these cases, the 
redundancy resulting from coding allows the system to tolerate a lower signal to noise 
ratio for a fixed data rate. The ability to tolerate a lower signal to noise ratio allows the 
system to maintain a fixed data rate with fewer errors or increase the data rate for a fixed 
number of errors.  



Accolade Engineering Solutions 44 B. Peterson   

Appendix A - Review of Matrix Arithmetic 
 

A matrix is a rectangular array of numbers. The dimensions of a matrix are defined by the 
number of rows and columns. A matrix with 2 rows and 3 columns is called a 2x3 matrix. 
A square matrix has the same number of rows and columns.  
 
Matrix Addition and Subtraction: 
 
1. The dimensions of the two matrices must be the same 
 
2. For addition (and subtraction), corresponding elements are added (or subtracted). 
 
3. The dimensions of the resulting matrix are the same as the two operand matrices. 
 
4. Example: 
 

1 2 3
4 5 6 =+ 7 8 9

1 4 7
8 10 12
5  9  13

 
 
Matrix Multiplication: 
 
1. For matrix A and matrix B where the product is A * B, the dimensions of the two 
matrices do not need to be the same but must satisfy the requirement that the number of 
columns in matrix A must equal the number of rows in matrix B.  
 
2. The product A * B = B * A is only possible for square matrices.    
 
3. For a product of two matrices A * B, the dimensions of the product matrix is the 
number of rows from the A matrix and the number of columns from the B matrix. For 
matrix A, an l x m matrix, and B, an m x n matrix, the result will be an l x n matrix. 
 
4. The method of multiplying two matrices is given below: 
 
      A       *       B       =    AB 
 

A11  A12  A13
A21  A22  A23

=*
B11  B12
B21  B22
B31  B32

(A11*B11 + A12*B21 + A13*B31) (A11*B12 + A12*B22 + A13*B32)
(A21*B11 + A22*B21 + A23*B31) (A21*B12 + A22*B22 + A23*B32)
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Transpose of a Matrix: 
 
1. The transpose of an m x n matrix A (denoted by AT) is defined to be the n x m matrix 
whose first column is the first row of A, whose second column is the second row of A, 
and so on. 
 
2. Example of a transpose of an array: 
  

A11  A12  A13
A21  A22  A23

=A
 

 
 

 

A11  A21
A12  A22
A13  A23

=AT
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