

Data Coding and Error Checking Techniques

Bruce Peterson
Accolade Engineering Solutions
15520 Rockfield Blvd., Suite H
Irvine, CA 92618
949-597-8378
www.accoladeeng.com

Accolade Engineering Solutions 2 B. Peterson

1.0 Introduction

 The purpose of coding data is to efficiently transport it through a particular
medium. The medium may be circuit board traces, ribbon cable, twisted pair copper,
copper coax, fiber optic or air. Each type of medium suffers from a group of impairments.
These impairments may include signal reflection, attenuation distortion, harmonic
distortion, phase distortion, intermodulation distortion, dropout, echo, crosstalk, delay
distortion manifesting itself as inter symbol interference (ISI), impulse noise, Gaussian
noise and frequency shift, All these impairments in the medium affect the ability to
transport data. In some cases, these factors can cause an excessive number of bit errors.
For short transmission line lengths and low signaling rates, the simple linear lines codes
may be employed. These codes may be unipolar or bipolar and may or may not have
clocking information contained within the code. When the channel is bandwidth limited,
more efficient codes are available. Such codes may utilize multi-level symbols and alter
the message data to allow the receiver to synchronize to it. The most sophisticated codes
use block coding or convolutional coding to improve the performance of transmission.
For a bandwidth limited channel, the maximum upper limit for reliable information
transfer is given by the Hartley-Shannon Law. This law equates the channel bandwidth
and the signal to noise ratio to the maximum channel capacity and indicates the
maximum number of symbols that can be transferred per second. This equation is given
below:

 C = B * log2(1 + SNR) symbols/second

 where: C is the channel capacity
 B is the channel bandwidth
 SNR is the signal to noise ratio

 This equation implies that we can trade channel bandwidth for signal to noise
ratio. When the data is coded, the system can tolerate a lower signal to noise ratio for the
same bit rate. This difference is called coding gain and is expressed in dB. An example of
coding gain is shown using the figure below.

Accolade Engineering Solutions 3 B. Peterson

For the 4-AM constellation, the dot in the curve shows that with the bit error rate of 10-5
an uncoded system can reliably transfer 2 bits per symbol with a signal to noise ratio of
19dB. If coding is used with the 8-AM constellation, we can transmit at essentially the
same data rate with signal to noise ratio of about 13dB. Using coding and the 8-AM
constellation, the coding gain is 19dB - 13dB = 6dB. Since the data rate is not increased
over the 4-AM case, we can make use of all 6dB of the coding gain. When the symbol
rate is increased, the additional noise will lower the signal to noise ratio causing some of
the coding gain to be lost. In most cases, the coding gain exceeds the loses due to the
additional noise. The overall gain (coding gain - noise gain) will allow higher bit rates
than non-coded systems. The table below shows the coding gains and the noise gains for
three of the coding techniques discussed in this paper.

Type of Code Coding Gain Noise Gain
Single-Parity Check 3 dB 1.75dB

Hamming 4.7 dB 2.36 dB
1/2 Convolutional 7 dB 3 dB

Accolade Engineering Solutions 4 B. Peterson

2.0 Linear Line Codes

 Linear line codes are those in which the transmitted data depend linearly on the
information bits.

2.1 Binary antipodal codes

 The binary antipodal codes require the minimum bandwidth but lack clocking
information for receiver synchronization. These codes also have a DC content to their
spectrum. The RZ code uses twice the bandwidth of the NRZ or NRZI codes. These
codes are used only for the simplest communication systems where the transmitter and
receiver are relatively close, DC coupled and low speed.

2.1.1 NRZ-L
 rules:
 1. 0 = “+”
 2. 1 = “0”

 1 0 0 1 0 1 1 1 0 1
+v

-v

2.1.2 NRZI

 rules:
 1. 0 = no transition at beginning of interval
 2. 1 = transition at beginning of interval

 1 0 0 1 0 1 1 1 0 1
+v

-v

Accolade Engineering Solutions 5 B. Peterson

2.1.3 Unipolar RZ

 rules:
 1. 0 = transition from “0” to “+” at start of interval
 transition from “+” to “0” at middle of interval
 2. 1 = “0”

 1 0 0 1 0 1 1 1 0 1
+v

-v

Accolade Engineering Solutions 6 B. Peterson

2.2 Binary Bipolar Codes

 Like the binary antipodal codes, the polar NRZ and polar RZ require the
minimum bandwidth but lack clocking information for receiver synchronization. If the
number of ones and zeros are equal they have no DC content to their spectrum. These
codes by themselves do not guarantee an equal number of ones and zeros. In these cases,
special encoding techniques, such as scrambling, are employed to provide nearly an equal
number of high and low pulses. The polar NRZ is the type of coding technique used by
the serial port of a personal computer. The Biphase or Manchester pulses have the
property of eliminating the DC component but require twice the bandwidth. The Biphase
and Manchester also have the property that they contain clocking information which may
be extracted by the receiver. Manchester coding is the coding method used for 802.3
(Ethernet).

2.2.1 Polar NRZ

 rules:
 1. 0 = “+”
 2. 1 = “-”

 1 0 0 1 0 1 1 1 0 1
+v

-v

2.2.2 Polar RZ

 rules:
 1. 0 = transition from “0” to “+” at start of interval
 transition from “+” to “0” at middle of interval
 2. 1 = transition from “0” to “-”at start of interval
 transition from “-” to “0” at middle of interval

 1 0 0 1 0 1 1 1 0 1
+v

-v

Accolade Engineering Solutions 7 B. Peterson

2.2.3 Manchester

 rules:
 1. 0 = transition from “+” to “-” in middle of interval
 2. 1 = transition from “-” to “+” in middle of interval

 1 0 0 1 0 1 1 1 0 1
+v

-v

2.2.4 Biphase-L or Manchester II

 rules:
 1. 0 = transition from “-” to “+” in middle of interval
 2. 1 = transition from “+” to “-” in middle of interval

 1 0 0 1 0 1 1 1 0 1
+v

-v

2.2.5 Differential Manchester

 rules:
 1. always transition in middle of interval
 2. 0 = transition at beginning of interval
 3. 1 = no transition at beginning of interval

 1 0 0 1 0 1 1 1 0 1
+v

-v

Accolade Engineering Solutions 8 B. Peterson

2.3 Twinned binary codes

 To eliminate the DC component from the spectrum and to keep from increasing
the symbol rate, the twinned binary codes can be used. A twinned binary code increases
the number of available symbols by increasing the number of signal levels. The
pseudoternary, Bipolar-AMI and the twinned binary codes are examples of codes which
utilize three signal levels. The main disadvantage of Twinned binary codes is a slight
loss in noise immunity. The most widely used of the multilevel binary codes is the
Bipolar-AMI code. The Bipolar-AMI code was first used in the PCM based T1-carrier
system by Bell Labs in 1962. The Bipolar-AMI suffers in that the receiver loses clocking
information when a continuous stream of zeros is transmitted. The next section will
describe a variation of the Bipolar-AMI code which solves this problem.

2.3.1 Pseudoternary

 rules:
 1. 0 = alternating “+” and “-”
 2. 1 = 0

 1 0 0 1 0 1 1 1 0 1
+v

-v

2.3.2 Bipolar-AMI

 rules:
 1. 0 = 0
 2. 1 = alternating “+” and “-”

When a “1” is detected which does not have opposite polarity of the last detected “1”, a
bipolar violation occurs. The Bipolar-AMI, therefore, can be used to detect some errors.

 1 0 0 1 0 1 1 1 0 1
+v

-v

Accolade Engineering Solutions 9 B. Peterson

2.3.3 Twinned binary code

 rules:
 1. 0 1 transmits “+”
 2. 1 0 transmits “-”
 3. 0 0 transmits “0”
 4. 1 1 transmits “0”

 1 0 0 1 0 1 1 1 0 1
+v

-v

Accolade Engineering Solutions 10 B. Peterson

3.0 Block Line Codes

 Unlike the linear line codes which operate on a stream of information bits, the
block line codes operate on a block of information bits. Block line codes are generally
used to code multiple information bits (k) into fewer symbols (n). The possibilities for k
and n must satisfy the expression: 2k Ln, where L is the number of signal levels
available. When the equality is not met, the redundancy can be used for error tolerance,
timing information or to minimize the running digital sum (RDS) and its associated
baseline wander. The running digital sum is a function which sums the digital levels
which are transmitted. Each “1” that is transmitted increases the running digital sum by 1
while each “0” that is transmitted, decreases the running digital sum by 1. The other use
of block codes is to solve the receiver synchronization problem when the line has no
transitions for an excessive period of time due to the transmission of too many zero bits
(or one bits). The B8ZS and HDB3 codes are examples codes which prevent the
transmission of too many zeros. Block codes do have the disadvantage of requiring
framing of the incoming block. Framing will increase the information overhead slightly
and will increase the complexity of the receiver and transmitter, but are usually justified
by the performance gains.

3.1 Binary Block Codes

3.1.1 B8ZS

 rules:
 1. same as bipolar AMI except that any string of eight zeros is replaced
 by a string with two bipolar code violations

Each “V” below is a bipolar violation. The “B” following each “V” is to cancel the DC
component of the bipolar violation

 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0
 0 0 0 V B 0 V B

+v

-v

Accolade Engineering Solutions 11 B. Peterson

3.1.2 HDB3

 rules:
 1. same as bipolar AMI except that any string of four zeros is replaced
 by a string with one code violation

 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0
 0 0 0 V B 0 0 V B 0 0 V

+v

-v

3.2 Multilevel Block Codes

 When the medium is bandlimited and higher signaling rates are needed, multi-
level block codes are a common solution. With multi-level block codes, the symbol rate
is less than the bit rate. Due to the magnitude of the noise in the medium and the signal
losses over the length of the medium, the number of discrete signals levels is limited. The
greater the number of signal levels, the greater the chance that one symbol could be
mistaken for another. For this reason, codes beyond four signal levels are not common
except in the most complex transmission systems. In this section, the characteristics of
three level codes will be explored.

3.2.1 kBnT codes

 Unlike the binary block codes which transmit only on bit per symbol, the kBnT
codes are capable of transmitting an average of 1.58 bits per symbol. For the kBnT
codes, k is the number of information bits in the block and n is the number of ternary
symbols in the code. The notation defines the number of k bits that are encoded into the n
available symbols. For three level signals, the values for k and n must satisfy the
expression 2k 3n. The table below lists several possibilities for k and n and their
efficiencies relative to the rate of 1.58 bits per symbol. Although it would be tempting to
implement the 3B2T or the 6B4T codes due to their efficiency, they lack the redundancy
that may be required to control the power spectrum or control the density of ones. The
4B3T code is a good compromise between efficiency and redundancy and will be
described in more detail.

Accolade Engineering Solutions 12 B. Peterson

Efficiencies for k and n values when L (signal levels) = 3
k n code efficiency
1 1 1B1T 63%
3 2 3B2T 95%
4 3 4B3T 84%
6 4 6B4T 95%
7 5 7B5T 89%

 When implementing a kBnT code, the user must choose between coding
efficiency and redundancy. Efficiency allows more bits to be transmitted for a given
bandwidth. Redundancy allows for greater coding gain. The 4B3T is most often used
since it is the best compromise between efficiency and redundancy.

Accolade Engineering Solutions 13 B. Peterson

3.2.2 Bi-mode 4B3T Coding

 To eliminate a DC component of a bit stream, many methods can be employed.
Some of these methods may include scrambling, bit stuffing or bi-mode coding. The
scrambling techniques suffer since they must implement multiple memory stages since
each output is determined by present and past inputs. Bit stuffing suffers because it
increases the number of bits transmitted. Bi-mode coding does not require as much
memory as scrambling and does not increase the number of bits transmitted. The three
signal levels for the 4B3T will be labeled +, 0 and -. The redundancy in this code will be
used to bound the running digital sum between +/- 3.

 rules:
 1. select symbols from column A if the RDS is between -3 and -1
 2. select symbols from column B if the RDS is between 0 and 3

block value symbol A symbol B RDS
0000 + 0 - + 0 - 0
0001 - + 0 - + 0 0
0010 0 - + 0 - + 0
0011 + - 0 + - 0 0
0100 + + 0 - - 0 +/-2
0101 0 + + 0 - - +/-2
0110 + 0 + - 0 - +/-2
0111 + + + - - - +/-3
1000 + + - - - + +/-1
1001 - + + + - - +/-1
1010 + - + - + - +/-1
1011 + 0 0 - 0 0 +/-1
1100 0 + 0 0 - 0 +/-1
1101 0 0 + 0 0 - +/-1
1110 0 + - 0 + - 0
1111 - 0 + - 0 + 0

Accolade Engineering Solutions 14 B. Peterson

For a bit stream of 1010 0101 1100 0011 1001 0110 with an initial RDS of zero, the
coded symbols will be the following:

 - + - 0 + + 0 - 0 + - 0 + - - + 0 +
RDS -1 +1 0 0 -1 0
+v

-v

3.2.3 2B1Q (Two binary, one quaternary) Coding

 Like the kBnT coding, 2B1Q transmits more than one bit per symbol. Each
symbol in 2B1Q contains 2 bits. 2B1Q effectively halves the required bandwidth for a
channel. The quaternary symbols are encoded as shown below:

First Bit (sign) Second Bit (sign) Quat
1 0 +3 (+2.5V)
1 1 +1 (+5/6V)
0 1 -1 (-5/6V)
0 0 -3 (-2.5V)

 The two most common implementations of 2B1Q is the basic rate ISDN-U interface
and the HDSL interface. The basic rate ISDN-U interface transmits 160Kbits/second.
Most of the energy of the ISDN-U signal is under 40KHz. The HDSL (high bit rate
digital subscriber line) transmits 784Kbits/second over twisted pair copper wire.
768Kbits of the transmitted signal is the payload. The remaining 8Kbits are used for
overhead and signaling. Most of the energy of the HDSL signal is under 196KHz.

For a scrambled bit stream of 1010 0101 1100 0011 1001 0110, the coded symbols will
be the following:

 10 10 01 01 11 00 00 11 10 01 01 10

+3
+1
-1
-3

Accolade Engineering Solutions 15 B. Peterson

4.0 Error Checking Codes

4.1 Single-Parity Check Code

 The parity check coder uses the least number of “check” bits, but is only able to
detect bits errors which involve an odd number of bits. Any block with an even number
of bits in error will not be detected by this method. The input to the Single-Parity Check
coder is the m message bits and the output of the Single-Parity Check coder is an m+p
codeword. The extra bit is appended to the original data by a device which implements
the generator matrix. The codeword is transmitted to the receiver where it is checked
with another device which implements a parity check matrix. The output of the parity
check device is a single data bit. This output is called the Single-Parity Check syndrome.
A bit value of zero indicates that no errors were detected and a bit value of one indicates
that an error has been detected. All the matrix multiplication is performed modulo-two.

The generator matrix for the Single-Parity Check Code
for a 4 bit message block is:

G =

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

The parity-check matrix for the Single-Parity Check Code
for a 4 bit message block is:

H = 1 1 1 1 1

Example for odd value message block:

let the message block, b = 1 0 0 0

b * G = c

 where:
 G is the Single-Parity Check generator matrix
 c is the resulting Single-Parity Check codeword

Accolade Engineering Solutions 16 B. Peterson

The format of the codeword is:

m1 m2 m3 m4 p

 where:
 m1, m2, m3, m4 are the message bits
 p is the parity check bit

1 0 0 0

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

= 1 0 0 0 1*

To check the Single-Parity Check codeword, we multiply the codeword by the transpose
of the parity check matrix to get the syndrome bit S. A syndrome bit value of zero
indicates that no parity errors were detected. We must remember, however, that the data
may still be in error but undetectable using this method (an even number of bit errors are
not detectable with parity checking). A syndrome bit value of one indicates that a parity
error has been detected.

c * HT = S

 where:
 c is the Single-Parity Check codeword
 HT is the transpose of the parity check matrix
 S is the syndrome bit

1 0 0 0 1 *

1
1
1
1
1

= 0

The resulting zero indicates that no errors were detected. The parity check bit will be
removed from the codeword to get the original message block. Now the same message
block will be used but the codeword will have bit two inverted.

1 1 0 0 1 *

1
1
1
1
1

= 1

bit in error

Accolade Engineering Solutions 17 B. Peterson

The resulting value of one for the syndrome indicates that an error has been detected.

Example for even value message word:

let the message block, b = 1 0 1 0

1 0 1 0

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

= 1 0 1 0 0*

Generating the syndrome bit as before:

1 0 1 0 0 *

1
1
1
1
1

= 0

The resulting zero indicates that no errors were detected. The parity check bit will be
removed from the codeword to get the original message block. Now the same message
block will be used but the codeword will have bit three inverted.

1 0 0 0 0 *

1
1
1
1
1

= 1

bit in error

The resulting value of one for the syndrome indicates that an error has been detected.

Accolade Engineering Solutions 18 B. Peterson

4.2 Checksum Codes

 One popular method for error detection is the use of checksums. Checksums have
the advantage of operating on a long sequence of data. Typically the data is 8 bit
character data (or ASCII data) in a file or character frame. Each character byte is summed
into a checksum variable. As the data is summed into the checksum variable, the carry’s
are ignored. The checksum variable is usually appended to the end of the data field and is
called the checksum field. The checksum field can be one or more bytes. The ability to
detect errors in a multibyte sequence is affected by the number of bytes in the sequence
and the size of the checksum field. Four different types of checksums will be described:
the single precision checksum, the double precision checksum, the Honeywell checksum
and the residue checksum.

4.2.1 Single-Precision Checksum

 For a single-precision checksum, each byte of the data is summed into a single
byte. The example below shows how a single precision checksum is calculated. The
limitation of the single precision checksum is its ability to detect stuck at one (SA1)
failures in the most significant bit of the input data. Since the SA1 in the MSB of the
checksum will be discarded often in the carry operation, our ability to detect SA1 is poor.

Transmitted Data:

Byte 1 0 0 1 0 1 1 0 0 2CH
Byte 2 0 1 0 1 0 0 1 1 53H
Byte 3 1 0 0 1 0 1 1 1 97H
Byte 4 1 1 0 1 0 1 0 0 D4H

Carry Ignored
 Computed Checksum

 1 1 1 0 1 0 1 0 EAh

Transmitted Block:

 Data Checksum
2C 53 97 D4 EA

Accolade Engineering Solutions 19 B. Peterson

4.2.2 Double-Precision Checksum

 For a double-precision checksum, each location of the data of n-bits is summed
into a location of 2n-bits. For the single precision example, a double precision checksum
would be 16 bits (2 bytes). The example below shows how a double precision checksum
is calculated for 8 bit data. If the data was 16 bit data, the double precision checksum
would be 32 bits (4 bytes). The problem with the detection of SA1 faults can be detected
using the double precision checksum. Carry’s from the low order byte of the checksum is
summed into the high order byte of the checksum. Carry’s from the high order byte of the
checksum are ignored.

Transmitted Data:

Byte 1 5A
Byte 2 EF
Byte 3 24
Byte 4 C5

Computed Checksum
02 32

Transmitted Block:

 Data Checksum
5A EF 24 C5 02 32

Accolade Engineering Solutions 20 B. Peterson

4.2.3 Honeywell Checksum

 The Honeywell Checksum is an alternative to the double precision checksum. The
data is still summed into a location which is 2n bits in length where n is the size of the
data word. Unlike the double precision checksum, the Honeywell checksum interleaves
the data bytes into double length words before the addition to the checksum location.
Carry’s from the high order byte of the checksum are ignored. The Honeywell checksum
can find SA1 and SA0 errors which occur in the same bit positions of all the data words.
The example below shows how the Honeywell checksum is calculated for 8 bit data.

Transmitted Data:

Byte 1 C3
Byte 2 FE
Byte 3 DB
Byte 4 B4

Interleaved Data
FE C3
B4 DB

Computed Checksum
B3 9E

Transmitted Block:

 Data Checksum
C3 FE DB B4 B3 9E

Accolade Engineering Solutions 21 B. Peterson

4.2.4 Residue Checksum

 The residue checksum is a variation of the single precision checksum which
solves the problem of the undetectable SA1 errors in the MSB of the data word. The
residue checksum takes the carry out from the MSB of the checksum and adds it to the
LSB of the checksum. The example below shows how a residue checksum is calculated
for 8 bit data.

Transmitted Data:

 Byte 1 13
 Byte 2 A4
 Byte 3 6C
 Byte 4 41

1 Carry 64

Wraparound Carry

+

 Computed Checksum
 65

Transmitted Block:

 Data Checksum
13 A4 6C 41 65

Accolade Engineering Solutions 22 B. Peterson

4.3 CRC Codes

 A better method to detect errors in a large block of data involves the use of CRC
codes. The hardware required to implement a CRC code is slightly more complicated
than other error detection codes but it has an error detection effectiveness greater than
99.9%. The CRC is calculated by dividing the message block by a generator polynomial.
The quotient is discarded and the remainder is appended to the end of the message block
for transmission. CRC hardware is implemented using multi-stage shift registers so the
length of the message block does not affect the operation of the CRC generation
hardware. At the receiving end, the transmitted block with the CRC is divided by the
same generator polynomial. Once again the quotient is discarded and the remainder is
checked to determine if any errors occurred. A remainder of zero indicates that no errors
were detected. Since the CRC is only an error detecting code, the position of an error in
the received message can not be determined. CRC codes would be used in
communication protocols that use automatic repeat request (ARQ). The four CRC codes
described in this paper include the CRC-12, the CRC-16, the CRC-CCITT and the CRC-
32.

 The operation of all the CRC codes is identical. To explain the CRC generation
process, a short simple message block and a small CRC generator polynomial will be
used. The CRC performs its arithmetic on binary data which has been represented as a
polynomial. Each bit position of the message block is represented as a coefficient of a
polynomial. The general form of the polynomial is:

 M(x) = bnXn + bn-1Xn-1 + bn-2Xn-2 + . . . + b2X2 + b1X + b01

 where:
 bn = the value of the message block at bit position n (0 or 1)

The degree of the polynomial will be one less than the total number of bits in the message
block.

 The message block “101001101” has 9 bits (k = 9). The polynomial
representation for this message block will have a degree of 8. With the LSB to the right,
the polynomial representation for the message block is:

 M(x) = 1•X8 + 0•X7 + 1•X6 + 0•X5 + 0•X4 + 1•X3 + 1•X2 + 0•X + 1•1

After simplification, the polynomial for the message block is:

M(x) = X8 + X6 + X3 + X2 + 1

Accolade Engineering Solutions 23 B. Peterson

For the generator polynomial we will use:

G(x) = X5 + X2 + X + 1

 = 1 0 0 1 1 1

Since the degree of the generator polynomial is 5, the number of bits in the generated
CRC will be 5. The total number of bits transmitted, therefore, will be 14 (n = 14).

The calculation of the CRC for transmission proceeds as follows:

1. Multiply the message polynomial by Xn-k. In this example the value will be X14-9 = X5.

 Xn-k• [M(x)] = X5• [X8 + X6 + X3 + X2 + 1]

 = X13 + X11 + X8 + X7 + X5

 = 1 0 1 0 0 1 1 0 1 0 0 0 0 0

2. Divide Xn-k• [M(x)] by the generator polynomial G(x) and discard the quotient. The
remainder is the CRC or the Block Check Character (BCC) which will be called B(x).

1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0
1 0 1 1 1 1 1 1 0

 1 0 0 1 1 1
 1 1 1 0 1 0
 1 0 0 1 1 1

 1 1 1 0 1 1
 1 0 0 1 1 1

 1 1 1 0 0 0
 1 0 0 1 1 1

 1 1 1 1 1 0
 1 0 0 1 1 1

 1 1 0 0 1 0
 1 0 0 1 1 1

 1 0 1 0 1 0
 1 0 0 1 1 1

 1 1 0 1 0

discard quotient

remainder (BBC), B(x)

Accolade Engineering Solutions 24 B. Peterson

3. Append the CRC, B(x), to the message block, M(x), to create the transmitted message
block, T(x).

 T(x) = Xn-k• [M(x)] + B(x)

 1 0 1 0 0 1 1 0 1 0 0 0 0 0 Xn-k[M(x)]
+ 1 1 0 1 0 B(x)

 1 0 1 0 0 1 1 0 1 1 1 0 1 0 T(x)

Checking the transmitted block at the receiving end proceeds as follows:

1. Divide T(x) by the generator polynomial G(x) and discard the quotient. A remainder of
zero indicates that the block was received without error.

1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0
 1 0 1 1 1 1 1 1 0

 1 0 0 1 1 1
 1 1 1 0 1 0
 1 0 0 1 1 1

 1 1 1 0 1 1
 1 0 0 1 1 1

 1 1 1 0 0 1
 1 0 0 1 1 1

 1 1 1 1 0 1
 1 0 0 1 1 1

 1 1 0 1 0 0
 1 0 0 1 1 1

 1 0 0 1 1 1
 1 0 0 1 1 1

 0

discard quotient

remainder equals zero (no errors)

Accolade Engineering Solutions 25 B. Peterson

4.3.1 CRC-12

 The CRC-12 polynomial is used for block containing characters that are six bits
in length. The generator polynomial for the CRC-12 is:

 G(x) = X12 + X11 + X3 + X2 + X + 1

The circuit which implements this polynomial is shown below. The block of data is
shifted into the data input line. After all the data has been shifted in, the remainder will
be stored in the registers 0 through 11.

11 10+ + 9 + 12345678 ++ 0

X X2 X3 X11 X12

LSBMSB

Data Input
CRC-12 Polynomial

4.3.2 CRC-16

 The CRC-16 polynomial is used for block containing characters that are eight bits
in length. The generator polynomial for the CRC-16 is:

G(x) = X16 + X15 + X2 + 1

The circuit which implements this polynomial is shown below. The block of data is
shifted into the data input line. After all the data has been shifted in, the remainder will
be stored in the registers 0 through 15.

15 14 + 12 12345678 ++ 0

X2 X15 X16

LSBMSB

Data Input
CRC-16 Polynomial

9101113

Accolade Engineering Solutions 26 B. Peterson

4.3.3 CRC-CCITT

 The CRC-CCITT polynomial is used for block containing characters that are eight
bits in length. The generator polynomial for the CRC-CCITT is:

G(x) = X16 + X12 + X5 + 1

The circuit which implements this polynomial is shown below. The block of data is
shifted into the data input line. After all the data has been shifted in, the remainder will
be stored in the registers 0 through 15.

15 14 +12 12345678 ++ 0

X5 X12 X16

LSBMSB

Data Input
CRC-CCITT Polynomial

9101113

4.3.4 CRC-32

 The CRC-32 polynomial is used for block containing characters that are sixteen
bits in length. The generator polynomial for the CRC-32 is:

G(x) = X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1

The circuit which implements this polynomial is shown below. The block of data is
shifted into the data input line. After all the data has been shifted in, the remainder will
be stored in the registers 0 through 31.

2829 +27 212223 B+

X8 X10

MSB

242526 +

X7

+

X2

30+

X

31

15 14 +12 12345678 ++ 0

X23 X26 X32

LSB

Data Input
CRC-32 Polynomial

9101113 +

X22

+

X16

16171819+

X12

20

A

B

A

+

X11

+

X5

+

X4

Accolade Engineering Solutions 27 B. Peterson

5.0 Memoryless Error Checking and Correcting Block Codes

 One of the best uses for the redundancy in a multi-level code is to implement
error checking and correcting. Like other error checking methods, the check bits are
transmitted along with the message bits. The ability to perform error correction at the
receiving end without retransmission is called forward error correction (FEC). FEC is
one of the best methods when the communication is simplex or broadcasted to many
users. Two popular methods to check and correct errors using block codes are Parity
Check coding and Hamming coding. These techniques are called “memoryless” since the
output of the block coder is only dependent on the present state of its inputs. With each
error checking and correcting code we have a specification called the Hamming distance.
The Hamming distance determines the maximum number of bits in error that can be
detected in a block and the maximum number of bits that can be corrected in a block. The
formulas below show the relationship between the Hamming distance and the number of
errored bits that can be detected and corrected.

 maximum number of detectable bits in error is H - 1

 maximum number of correctable bits in error is (H - 1)/2

The block coder block diagram for (7,4) coding is shown below:

BLOCK
CODER

C(1)

C(7)

B(1)

B(4)

CkBk

Source
Bits

Coded
Bits

Parallel-to-Serial ConverterSerial-to-Parallel Converter

Shift Register Shift Register

Accolade Engineering Solutions 28 B. Peterson

5.1 Parity Check Code

 The single parity check coding method can be extended in a manner which allows
for errors to be detected and corrected. The number of parity (check) bits increases but
the ability to detected up to two bits in error and correct one bit is achieved. The figure
below illustrates the method employed to implement multiple parity check bits.

 m1

 m2

 m3

 c1

 m4

 m5

 m6

 c2

 m7

 m8

 m9

 c3

 c4

 c5

 c6

 In this example, the bits m1 - m9 are the 9 original message bits and bits c1 - c6 are
the 6 check bits. The even parity, the check bits c1 - c6 are encoded as follows:

c1 = m1 m2 m3
c2 = m4 m5 m6
c3 = m7 m8 m9
c4 = m1 m4 m7
c5 = m2 m5 m8
c6 = m3 m6 m9

where is the modulo 2 addition operator (exclusive OR)

The codeword transmitted could have the form:

m1 m2 m3 m4 m5 m6 m7 m8 m9 c1 c2 c3 c4 c5 c6

 The position of the check bits can be placed anywhere in the codeword. For
simplicity, they are shown here clustered together at the end of the codeword. In practice,
the check bits would be separated in the codeword to ensure that a noise burst would not
destroy more than one of the check bits.

Accolade Engineering Solutions 29 B. Peterson

5.2 Hamming Codes

 Hamming coders are preferred over the Single-Parity Check coders when
detection as well as correction is desired. Hamming codes are capable of detecting up to
two bits in error and have the ability to correct single bit errors. Hamming codes come in
several varieties based on the number of message bits (m) and check bits (c) in its output.
All Hamming codes are classified as linear block codes. The input to the Hamming coder
is the m message bits and the output of the Hamming coder is an m+c codeword. The
extra bits are appended to the original data by a device which implements the generator
matrix. The codeword is transmitted to the receiver where it is checked with another
device which implements a parity check matrix. The output of the parity check device is
a string of data bits with the same number of bits as the check bits. This output is called
the Hamming syndrome and, through a look-up table, a single bit fault (if it exists) can be
identified and corrected. All the matrix multiplication is performed modulo-two.
Hamming codes are identified by a set of ordered pairs which indicate their number of
message bits and the number of bits in the codeword. For an (n,k) Hamming coder, k is
the number of input bits and n is the number of output bits. The number of Hamming bits
is determined by the number of data bits. The equation which determines the number of
Hamming bits is shown below.

 2n-k n +1

 where:
 k = number of data bits
 n = total number of bits transmitted in a message stream

All Hamming codes have a minimum Hamming distance of 3 regardless of the number of
check bits. A Hamming code, therefore, can be used for single error correction or double
error detection. The table below shows the relative efficiency of three sizes of Hamming
codes along with the polynomial coefficients. The greater the Rc value (the code rate), the
greater the efficiency.

n
(codeword size)

k
(block size)

R c
 (code rate)

G(p)
(polynomial)

7 4 0.57 1 011
15 11 0.73 10 011
31 26 0.84 100 101

Accolade Engineering Solutions 30 B. Peterson

The generator matrix for encoding the (7,4) Hamming codeword is:

G = [I | P]

where:
 I = Identity Matrix
 P = Submatrix

G =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

The parity-check matrix for determining the syndrome value for
the (7,4) Hamming codeword is:

H = PT I

where:
 PT = The transpose of the Submatrix of the generator matrix
 I = Identity Matrix

1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

H =

The syndrome translation table for the (7,4) Hamming code is:

Syndrome Bits (S) Bit in error (E)
0 1 2 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0
0 1 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1

Accolade Engineering Solutions 31 B. Peterson

Example of Hamming Code:

let the message block, m = 1 0 1 0

m * G = c

 where:
 G is the Hamming generator matrix
 c is the resulting Hamming codeword

The format of the codeword is:

m1 m2 m3 m4 c1 c2 c3

 where:
 m1, m2, m3, m4 are the message bits
 c1, c2, c3 are the check bits

1 0 1 0

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

= 1 0 1 0 0 1 1*

To check Hamming codeword we multiply the codeword by the transpose of the
Hamming parity check matrix to get the syndrome matrix S.

c * HT = S

 where:
 c is the Hamming codeword
 HT is the transpose of the Hamming parity check matrix
 S is the syndrome matrix

1 0 1 0 0 1 1

1 0 1
1 1 1
1 1 0
0 1 1
1 0 0
0 1 0
0 0 1

= 0 0 0*

Since the syndrome bits = 0, no errors have been detected. The check bits will be
removed from the codeword to get the original message block. Now the same message

Accolade Engineering Solutions 32 B. Peterson

(1010) will be used but the Hamming codeword will have the second bit from the left
inverted.

1 1 1 0 0 1 1

1 0 1
1 1 1
1 1 0
0 1 1
1 0 0
0 1 0
0 0 1

= 1 1 1*

bit in error

Checking the syndrome bits against the syndrome translation table confirms the reversal
of the second bit.

Accolade Engineering Solutions 33 B. Peterson

6.0 Error Checking and Correcting Block Codes with Memory

 One of the main disadvantages of Hamming codes is the fixed Hamming distance
and the difficulty of implementing coders for large blocks. The fixed Hamming distance
of Hamming codes allows for detection of two errored bits and the ability to correct only
a single errored bit. A code which allows the implementor to choose the desired
Hamming distance would be beneficial. The largest practical Hamming coder allows for
codewords of only 31 bits. Because of these limitations, cyclic block coders are preferred
when selected Hamming distances (redundancy) are or long block lengths are needed.
The type of cyclic block coder that will be described are BCH coders. BCH codes were
developed by R.C. Bose, D.K. Ray-Chaudhuri and A. Hocquenghem.

6.1 The general form for the polynomial for implementing the BCH codes is shown
below.

G(x) = (x + Db+1) (x + Db+2) (x + Db+3)... (x + Db+2t), P(x)

where:
 t = number of errors to correct per block
 b = 0 for narrow-sense BCH codes 0 for wide-sense BCH codes
 D() = roots of the polynomial
 P(x) = additional polynomial that ensures that all coefficients in G(x) are 1 or 0

 The methods to determine b, D() and P(x) are beyond the scope of this paper. A
simple procedure using a table driven approach can be used for a small codeword size.
The procedure to generate the BCH polynomial G(x) is given below.

1. Select values for n (codeword length) and m where the following equality is satisfied:

 n = 2m - 1

2. Select the desired number of errored bits to correct in each block of n bits. The
distance of the code is:
 d = 2t + 1

 where:
 t = number of errored bits to correct
 d = code distance

3. Select an integer j between 1 and 2m - 2 where j and 2m - 1 have no factors in common.
A reasonable default value for j is 1.

4. For the values of t and j selected earlier, find the first t odd multiples of j. When one
of the odd multiples exceeds 2m - 2, reduce the value modulo 2m - 1. The resulting
generator polynomial will have a root Di for each value of i = j, 3j, 5j...(2t-1)j.

Accolade Engineering Solutions 34 B. Peterson

5. Use the table to find the minimal polynomial for each root of Dy.

6. Multiply all the unique minimal polynomials. (a minimal polynomial may have more
than one Dy root.

6.2 Example of a generator polynomial for a BCH code

Design Requirements:

 codeword length = 15
 number of errors to correct = 3

Solution:

1. Using the equation: n = 2m – 1, set n = 15 and solve for m

 15 = 2m – 1

m = 4

2. The valid values for j that lie between 1 and 2m - 2 = 14 that are not factors of 2m - 1
are (1, 2, 4, 7, 8, 11, 13, 14) . The factors of 2m - 1 = 15 are 3 and 5 and are therefore
excluded from the list of possible j values. For this example let j = 1.

3. Since t = 3, the first 3 odd multiples of j are 1*j = 1, 3*j = 3 and 5*j = 5.

4. Using Table 1, the minimal polynomials are:

 M(1)(x) = x4 + x + 1

 M(3)(x) = x4 + x3 + x2 + x + 1

 M(5)(x) = x2 + x + 1

5. Now multiply M(1)(x), M(2)(x) and M(3)(x) together to get:

 G(x) = x10 + x8 + x5 + x4 + x2 + x + 1

Accolade Engineering Solutions 35 B. Peterson

6. The total number of bits in the codeword is given by the following equation:

 n = k + c

 where:
 n = number of bits in codeword
 k = number of information bits
 c = number of check bits

Since G(x) has a degree of 10, the number of information bits is 15 = k + 10 k = 5.

Accolade Engineering Solutions 36 B. Peterson

Table 1 - 4th order Minimal Polynomials
i minimal polynomial M(i)(x)
1 x4 + x + 1
3 x4 + x3 + x2 + x + 1
5 x2 + x + 1
7 x4 + x3 + 1

The Generator Polynomial is used to generate the check bits in the same manner as was
done for the CRC codes. On the receive side, the received codeword will have the form:

 R(x) = C(x) + E(x)

 where:
 R(x) = the received codeword
 C(x) = the transmitted codeword
 E(x) = the error polynomial

When E(x) = 0, no errors are present. When errors are present, the bits in error can be
determined by solving a system of polynomials which correspond to the number of
possible error syndromes.

Accolade Engineering Solutions 37 B. Peterson

7.0 Convolutional Coding

 Convolutional coding, unlike the block coding, uses a finite memory system to
generate the redundant codes. Convolutional coding is more popular than block coding
because it is simple to implement and their performance matches or exceeds that of block
codes. The input to the Convolutional coder is the m message bits and the output of the
Convolutional coder is the n data bits. The convolutional coder is called an m/n coder.
The new bits are created by a device which implements the generator matrix. The
encoded data is transmitted to the receiver where it is checked with another device which
implements a parity check matrix. The output of the parity check device is a single data
bit. This output is called the syndrome. A bit value of zero indicates that no errors were
detected and a bit value of one indicates that an error has been detected. All the matrix
multiplication is performed modulo-two. Using more complicated checkers and decoders
will allow the detection and correction of faulty data bits.

7.1 The 1/2 Convolutional Coder

 The 1/2 convolutional coder is the simplest convolutional coder to implement.
This coder inputs a single bit (Bk) and outputs two bits (Ck

(1) and Ck
(2)).

7.1.1 Coder for the 1/2 convolutional code

Generator Matrix is G(D) = [(1+D2) (1+D+ D2)]

The circuit which implements this coder polynomial is shown below:

+

D

+

D

Ck
(2)

Ck
(1)

Bk-1 Bk-2Bk

Example for 1/2 convolutional coder/decoder:

Bit sequence for Bk is 11011010

With initial conditions of Bk-1 = 0, the state table which shows the movement of data
through the coder is shown on the next page. The two bits (Ck

(1) and Ck
(2)) are the outputs

of the coder.

Accolade Engineering Solutions 38 B. Peterson

State Table for the 1/2 convolutional coder

Bk Bk-1 Bk-2 Ck
(1) Ck

(2)
0 0 0 0 0
1 0 0 1 1
0 1 0 0 1
1 0 1 0 0
1 1 0 1 0
0 1 1 1 0
1 0 1 0 0
1 1 0 1 0

7.1.2 Checker for the 1/2 convolutional code

Parity Check Matrix is H(D) = [(1+D+D2) (1+D2)]

The circuit which implements this parity checker polynomial is shown below:

D

+

D
Ck-1

(1) Ck-2
(1)Ck

(1)

+

+
DD

+

Ck
(2) Ck-1

(2) Ck-2
(2) S

node 2node 1

node 3

For the generated Ck

(1) and Ck
(2) bits above and with initial conditions of Ck-2 = Ck-1 = Ck

= 0, the state table which shows the movement of data through the decoder is shown
below. The S (syndrome) bit is the output of the decoder.

Accolade Engineering Solutions 39 B. Peterson

Parity Checker State Table (no data errors)
Ck

(1) Ck-1
(1) Ck-2

(1) Ck
(2) Ck-1

(2) Ck-2
(2) S node 1 node 2 node 3

0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 1 1 1
0 0 1 0 1 1 0 0 1 1
1 0 0 0 0 1 0 1 1 1
1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0 0

All zeros in the syndrome bit column of the state table indicates that no errors were
detected.

Now the same data will be used but the second bit of Ck

(1) will be inverted.

Parity Checker State Table (with data error)
Ck

(1) Ck-1
(1) Ck-2

(1) Ck
(2) Ck-1

(2) Ck-2
(2) S node 1 node 2 node 3

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1

0 0 0 1 1 0 1 0 0 1
0 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 1 1
1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0 0

The one values for the syndrome bit indicate that an error was detected starting at the
second set of bits in the bit stream. Since the output of the decoder would be a single bit,
the second bit in the bit stream could be reversed to correct the error

Accolade Engineering Solutions 40 B. Peterson

7.2 The 2/3 convolutional code

 The 2/3 convolutional coder is also easy to implement and provides three output
bits (Ck

(1), Ck
(2)and Ck

(3)) for two input bits (Bk
(1) and Bk

(2)).

7.2.1 Coder for the 2/3 convolutional code:

Generator Matrix is G(D) = 1 0 (1+D)
 0 1 D

The circuit which implements this coder polynomial is shown below:

D

+

D

Ck
(1)Bk

(1)

+

Bk
(2) Ck

(2)

Ck
(3)

Example for the 2/3 convolutional coder/decoder:

Bit sequence for Bk

(1) is 11011010
Bit sequence for Bk

(2) is 10100101

With initial conditions of Bk-1

(1) = Bk-1
(2) = 0

State Table for the 1/2 convolutional coder
Bk

(1) Bk-1
(1) Bk

(2) Bk-1
(2) Ck

(1) Ck
(2) Ck

(3) node 1
0 0 1 0 0 1 0 0
1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 1
1 0 0 1 1 0 0 1
1 1 0 0 1 0 0 0
0 1 1 0 0 1 1 1
1 0 0 1 1 0 0 1
1 1 1 0 1 1 0 0

Accolade Engineering Solutions 41 B. Peterson

7.2.2 Checker for the 2/3 convolutional code

Parity Check Matrix is H(D) = [(1+ D) D 1]

The circuit which implements this parity checker polynomial is shown below:

D

+

D
Ck

(1)

+
Ck

(2)

Ck
(3)

Ck-1
(1)

Ck-1
(2)

S

Parity Checker State Table (no data errors)

Ck
(1) Ck-1

(1) Ck
(2) Ck-1

(2) Ck
 (3) S node 1

0 0 1 0 0 0 0
1 0 0 1 0 0 1
0 1 1 0 1 0 1
1 0 0 1 0 0 1
1 1 0 0 0 0 0
0 1 1 0 1 0 1
1 0 0 1 0 0 1
1 1 1 0 0 0 0

The zeros for all values of the syndrome bit S indicates that no errors were detected.

Accolade Engineering Solutions 42 B. Peterson

Now the same data will be used but the second bit of Ck
(1) will be inverted.

Parity Checker State Table (with data error)

Ck
(1) Ck-1

(1) Ck
(2) Ck-1

(2) Ck
 (3) S node 1

0 0 1 0 0 0 0
0 0 0 1 0 1 0

0 0 1 0 1 1 0
1 0 0 1 0 0 1
1 1 0 0 0 0 0
0 1 1 0 1 0 1
1 0 0 1 0 0 1
1 1 1 0 0 0 0

The one values for the syndrome bit indicate that an error was detected starting at the
second set of bits in the bit stream.

Accolade Engineering Solutions 43 B. Peterson

8.0 Summary

 This paper has demonstrated many data coding techniques. The coding technique
chosen for a particular application is determined by the performance requirements of the
system. Short links with high signal to noise ratio can use simple linear line codes such as
RZ, NRZ, AMI or Manchester. When the link is longer and affected by noise, more
advanced coding techniques are employed. Redundancy can be added to the line code to
provide coding gain. The coding gain improves system performance. Line codes which
add redundancy include multilevel line codes, bipolar violation insertion codes and codes
which maintain a bounded RDS. For more advanced systems, error checking codes may
be used when the system also uses one of the ARQ protocols. Error checking codes
include parity checking, checksums and CRCs. When an ARQ protocol is not appropriate
due to the nature of the system, FEC techniques are used. FEC techniques include
Hamming coders, BCH coders and convolutional coders. In all these cases, the
redundancy resulting from coding allows the system to tolerate a lower signal to noise
ratio for a fixed data rate. The ability to tolerate a lower signal to noise ratio allows the
system to maintain a fixed data rate with fewer errors or increase the data rate for a fixed
number of errors.

Accolade Engineering Solutions 44 B. Peterson

Appendix A - Review of Matrix Arithmetic

A matrix is a rectangular array of numbers. The dimensions of a matrix are defined by the
number of rows and columns. A matrix with 2 rows and 3 columns is called a 2x3 matrix.
A square matrix has the same number of rows and columns.

Matrix Addition and Subtraction:

1. The dimensions of the two matrices must be the same

2. For addition (and subtraction), corresponding elements are added (or subtracted).

3. The dimensions of the resulting matrix are the same as the two operand matrices.

4. Example:

1 2 3
4 5 6 =+ 7 8 9

1 4 7
8 10 12
5 9 13

Matrix Multiplication:

1. For matrix A and matrix B where the product is A * B, the dimensions of the two
matrices do not need to be the same but must satisfy the requirement that the number of
columns in matrix A must equal the number of rows in matrix B.

2. The product A * B = B * A is only possible for square matrices.

3. For a product of two matrices A * B, the dimensions of the product matrix is the
number of rows from the A matrix and the number of columns from the B matrix. For
matrix A, an l x m matrix, and B, an m x n matrix, the result will be an l x n matrix.

4. The method of multiplying two matrices is given below:

 A * B = AB

A11 A12 A13
A21 A22 A23

=*
B11 B12
B21 B22
B31 B32

(A11*B11 + A12*B21 + A13*B31) (A11*B12 + A12*B22 + A13*B32)
(A21*B11 + A22*B21 + A23*B31) (A21*B12 + A22*B22 + A23*B32)

Accolade Engineering Solutions 45 B. Peterson

Transpose of a Matrix:

1. The transpose of an m x n matrix A (denoted by AT) is defined to be the n x m matrix
whose first column is the first row of A, whose second column is the second row of A,
and so on.

2. Example of a transpose of an array:

A11 A12 A13
A21 A22 A23

=A

A11 A21
A12 A22
A13 A23

=AT

Accolade Engineering Solutions 46 B. Peterson

References

1. Carlson, A. Bruce, Communication Systems, McGraw-Hill, Inc. 1986, Chapter 13

2. Freeman, Roger L., Telecommunication Transmission Handbook, John Wiley and
Sons, Inc., New York, Chapter 12

3. Hioki, Warren, Telecommunications, Prentice Hall, Inc., New Jersey, 1995, Chapter
12

4. Lee, Edward A. and Messerschmitt, David G., Digital Communications, Kluwer
Academic Publishers, Boston, 1994, Chapters 12-14

5. Reeve, Whitham D., Subscriber Loop Signaling and Transmission Handbook, The
Institute of Electrical and Electronics Engineers, Inc., New York, 1995, Chapter 3 & 5

6. Rorabaugh, C. Britton, Error Coding Cookbook, McGraw-Hill, New York, 1996,
Chapter 3 & 4

7. Stallings, William, Data and Computer Communications, Macmillan Publishing
Company, 1991, Chapter 3

